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The possible importance of overhangs
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We present simulation results of deposition growth of surfaces in two, three, and four dimensions for
ballistic deposition where overhangs are present, and for restricted solid on solid deposition where there are no
overhangs. The values of the scaling exponents for the two models are found to be different, suggesting that

they belong to different universality classes.
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The deposition growth of surfaces [1] has been a subject
of long continual theoretical and experimental interest [2]
due to its relevance to nonequilibrium processes in general as
well as its possible role in surface technology. The profile of
the deposited surface gradually roughens under the stochastic
accumulation of particles, and early simulations by Family
and Vicsek [3] suggested that the surface roughness exhibits
a dynamical scaling behavior. That is, the height-height cor-
relation function G(r—r',t)=([h(r,t)—h(r',t)]*)? scales
with time ¢ and separation /= |r—r’| as

G(Z,t)~7 f(t] /7). 1

h(r,t) is the height of the surface at position r and at time ¢.
The dynamical scaling behavior is characterized by the
roughness exponent « and the dynamical exponent B8, with
z=a/B. The scaling function f(x) behaves as f(x)=x? for
x<€1 and f(x)= const for x> 1. Thus the surface roughness
grows as G(t)~t” initially, independent of size, and for a
given size, /, the roughness saturates after a sufficiently
long time such that G(/) scales with / only as
G(A)~/~.

Numerous simulations in a variety of growth models
[4—-7] have since confirmed the hypothesis of dynamical
scaling, including models which allow overhangs to form
and models where overhangs are not allowed. An overhang
is formed when a particle sticks at a position higher than the
height of the surface at that point, such that the space below
the particle is not filled. Simulations of the restricted solid on
solid model [10,11], where incoming particles fall directly
onto the surface such that no overhangs can form, and may
only stick at a site if the resulting nearest neighbor height
differences are less than some predetermined value, have led
to a further consensus that the value of the scaling corre-
sponds to that of the Kardar-Parisi-Zhang equation [12],

ah— VZh A Vh)?
=V Vht 5 (Vh) ™+,

where 7 is a random variable. This equation is believed to be
a continuum description of deposition growth, and was de-
rived by assuming that the surface grows uniformly in the
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direction of the local normal. The exponents obtained are
exact in two dimensions [12], and numerically determined in
higher dimensions [8,9].

Results from simulations of the ballistic deposition model
[13] where incoming particles stick at the first point of con-
tact and thus allow overhangs are more controversial. At
present there is no clear consensus as to whether or not this
system belongs to the same universality class as that de-
scribed by the Kardar-Parisi-Zhang equation [14], or whether
the presence of overhangs leads to a different set of scaling
exponents. Early results by Meakin et al. gave a=0.47 and
B=0.331 in two dimensions, and @=0.33 and 8=0.24 in
three dimensions, in agreement with Kim and Kosterlitz’s
approximate formula [5] of @=2/(d+2) and B=1/(d+1)
for the Kardar-Parisi-Zhang equation. More recent results
suggest that the values of the scaling exponents may, in fact,
be different. Baiod et al. [15] obtained 8= 1/3 in two dimen-
sions and «=0.3 and B=0.22 in three dimensions; off-
lattice simulations have also given 8=0.343 in two dimen-
sions [16], but a clear scaling behavior was not observed in
three dimensions [17].

In this paper, we report results of simulations of ballistic
deposition and restricted solid on solid growth. We find that
the values of the scaling exponents for the ballistic deposi-
tion model are different from those of the restricted solid on
solid model. A summary of our results is given in Table I.

We also find that while on-lattice simulations give excel-
lent scaling behavior for the restricted solid on solid model,
the same is not true for ballistic deposition. Quasi-off-lattice
simulations were therefore carried out for the ballistic depo-
sition model. Namely, each axis of a surface of size L1
particle diameters is divided into nL points such that incom-
ing particles can be centered on any one of these points. For

TABLE 1. Scaling exponents obtained from our simulations.

Ballistic Restricted
Dimension deposition solid on solid
d a B z a B z
2 045 032 140 050 033 150
3 0.26 0.21 1.24 0.40 0.25 1.60
4 ~0.12 029 018 1.1
R1741 © 1994 The American Physical Society
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FIG. 1. Ballistic deposition for two dimensions. The inset shows
the plot of InG(/’,t) versus log,/ at the end of the simulation.

n large, the surface approaches a continuum, and for n=1,
we recover the on-lattice model. The height of the surface at
a position 7 is defined to be the height of a new particle if it
fell onto the surface at . We found that n=3 is sufficient to
give a good scaling behavior, and no differences were found
in the results with n= 5, 7, and 10. We performed simula-
tions in two, three, and four dimensions for both models and
the simulations are run until the equivalent of at least 2000
layers of atoms have been deposited. The total number of
particles deposited in each simulation is over 2X10°. The
minimum time required for each run is 24 CPU hours on a
DEC Alpha 400 workstation. To obtain good statistics, aver-
ages over up to ten runs were often needed. We note that our
estimates of the scaling exponents are obtained “by eye.”
That is, when a set of scaling exponent values were found
which gave the best data collapse, values close to it were
tried until the collapse became poor. The errors quoted there-
fore correspond to the range of values where no appreciable
difference in the quality of the collapse was observed. This
method is used as we did not want to prejudice any result by
fitting the collapsed data to some arbitary functional form,
and the range of data used is large enough for the data col-
lapse to be sufficiently sensitive to the particular values of
the exponents used.

In Fig. 1, the correlation function G(/,t) for a two di-
mensional ballistic deposition simulation is plotted versus
time in a log-log plot. The largest system size considered is
/=22, For the larger values of /, the roughness has not
saturated within the time scale of the simulation. In the dy-
namical scaling region, we see a clear power law behavior,
G(t)~tP. Also shown in the inset is a plot of InG(/,t)
versus log,/ for the data at the end of our simulation. For the
smaller sizes where saturation has been reached, we also find
a roughly linear dependence of InG on log,/” in agreement
with the predictions of dynamical scaling.

Direct extrapolation of the scaling exponents from the
gradients in the log-log plots turned out to be difficult be-
cause crossover effects due to the transition from the dy-
namical scaling regime to the saturated scaling regime intro-
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FIG. 2. Collapsed data for two dimensional ballistic deposition
simulation, with a=0.45 and 8=0.32. The data used range from
/=22 to 2'°. The inset shows the collapse obtained with the ex-
ponents obtained for the restricted solid on solid model. Natural
logarithms are used for the collapse.

duce significant corrections. Instead, by rewriting Eq. (1) as
InG(/,t)— BInt=F(aln/ — Blnt), (2)

we can obtain good estimates of the dynamical and rough-
ness exponents by collapsing our data for all sizes and all
times considered. This, in fact, provides a way of checking
also whether the data correspond to just one scaling regime,
or whether there is also a crossover between different uni-
versality classes with different scaling exponents. We note
that the surface roughness during the initial few time steps is
strongly influenced by transient effects, and have been dis-
carded in the data collapse.

The collapsed data for the two dimensional ballistic depo-
sition result is shown in Fig. 2. Data for / ranging from 22
to 2!° are used in the plot, with over 6 X 10° particles depos-
ited. The values of the exponents used are a=0.45 and
B=0.32. We have also carried out simulations of the re-
stricted solid on solid model in two dimensions, and found
that «=0.50 and 8=0.33, in agreement with the results of
previous simulations.

The collapsed data for the three dimensional simulations
are shown in Fig. 3. The upper diagram is for the restricted
solid on solid model. The size of the system considered is
210210 and over 2 X 10° particles were deposited in a run.
The data presented represent the average over seven indepen-
dent runs, and include values for /* ranging from 22 to 2°.
The values of the scaling exponents obtained in this case are
a=0.40 and B8=0.25. This is in agreement with the approxi-
mate formula of Kim and Kosterlitz [5], but the value of 8
obtained is greater by 0.01 than that observed more recently
by Ala-Nissila et al. [11].

Ballistic deposition simulations in three dimensions are
also carried out for systems with size equal to 2% 2? par-
ticle diameters, with three subdivisions per particle diameter.
The collapsed data are shown in the lower diagram of Fig. 3.
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FIG. 3. Collapsed data for the three dimensional restricted solid
on solid simulation (upper diagram), and the ballistic deposition
simulation (lower diagram) for /=22 to 2°. The inset in the lower
diagram shows the collapse obtained if the exponents obtained from
the restricted solid on solid model were used instead. Natural loga-
rithms are used for the collapse.

Again, over 2 X 10° particles were deposited per run, and the
results presented represent the average over ten runs with
data for /=22 to 2° used in the data collapse. The simula-
tions were also carried out with seven subdivisions per par-
ticle diameter and no difference was found. The values of the
scaling exponents in this case are «=0.26 and 8=0.21, sig-
nificantly lower than the corresponding values for the re-
stricted solid on solid model.
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FIG. 4. A cross section of ballistic deposition growth in three
dimensions taken at a height of 200 particle diameters. The length
of the horizontal and vertical axis corresponds to 100 particle
diameters.

sion versus the substrate dimension.

We have also carried out simulations in higher dimensions
for both models. However, due to computational difficulties,
we are restricted to relatively small sizes. For the ballistic
deposition model the largest size possible in four dimensions
or higher is still too small for the dynamical scaling regime
to be observed. Estimates of the roughness exponent in four
dimensions, however, give a value of @=~0.12. The uncer-
tainty in this case is due to strong fluctuations in the rough-
ness as a result of the small system size, and the number of
runs required to obtain better statistics is prohibitively large.
For the restricted solid on solid model, the fluctuations are
smaller even in four dimensions and we have been able to
obtain reliable values for both the dynamical and the rough-
ness exponents. These are «=0.29 and 8=0.18, in good
agreement with those obtained by Ala-Nissila et al. [11].
Again, in accordance with the trend observed in lower di-
mensions, the exponent of the ballistic deposition model is
lower than that of the restricted solid on solid model.

We have found that variations in the value of either a or
BB by as little as 0.01 are sufficient to give clear deterioration
of the data collapse plots. The values we present are there-
fore accurate to the figures quoted. The most important im-
plication of this is that, from our results, the dynamical scal-
ing behavior of the ballistic deposition model and the
restricted solid on solid model belong to different universal-
ity classes. We have shown in the insets to Figs. 2 and 3 what
happens when we try to collapse the ballistic deposition data
with the exponents obtained from the corresponding re-
stricted solid on solid simulations. It is clear from the dia-
grams that even in two dimensions, where the differences
between the values of the scaling exponents for the ballistic
deposition model and those of the restricted solid on solid
model are apparently small, a satisfactory data collapse can-
not be obtained. In view of the belief that the dynamics of
the restricted solid on solid model corresponds to that of the
Kardar-Parisi-Zhang equation, our results would therefore
further suggest that the Kardar-Parisi-Zhang equation is not
appropriate in describing deposition growth in situations
where overhangs are dominant. Indeed, our values of the
scaling exponents for the ballistic deposition model in two,
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three, and four dimensions lie outside the range of the values
for the Kardar-Parisi-Zhang exponents [12,8,9].

We have also tried to examine the structure of the solid
formed by growth under ballistic deposition conditions. Fig-
ure 4 shows a cross section of the bulk formed in a three
dimensional ballistic deposition simulation. The cross sec-
tion corresponds to a height of 200 particle diameters from
the substrate, and is taken after all the particles at this height
are covered. The cross section shown corresponds to an area
of 100X 100 particle diameters. We find that there are very
few connected lines, and no connected rings in the cross
section. In addition, we have calculated the fraction of sites,
x, which are occupied in a linear direction from the average
density, p. For a d, dimensional surface, the density is given
by p=x%. In Fig. 5 a plot of x versus substrate dimension is
shown. The results indicate that of order 0.4 of the sites
along a line on the surface are occupied in all dimensions.
This, together with the cross section plot, corroborates the
idea that particles grow on the edges of overhangs, and al-
most immediately branch off to form a complex treelike
structure.

In summary, we have found that the presence of over-
hangs is an important factor in determining the scaling prop-
erties of deposition growth. In a model such as ballistic
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deposition, overhangs will form when the local surface gra-
dient exceeds a critical value corresponding to the presence
of a sharp step in the surface profile. In such a situation, the
next particle will stick to increase the lateral size of the over-
hang region rather than to reduce the surface gradient by
falling to the lower surface. Thus, as overhangs begin to
form, they will tend to increase the lateral correlation at a
fast rate, and the surface will no longer grow in the direction
of its local gradient. The result may be an anisotropic growth
which when coarse grained leads to broader and flatter struc-
tures. Although such a picture can give a behavior consistent
with the results of our simulations, the search for a proper
theory for deposition growth in the presence of overhangs
remains an important challenge.

Note added. Since submission we have received a copy of
unpublished work from Cieplak, Maritan, and Banavar [18]
in which they reported the possible significance of overhangs
in some related problems.
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